Když v roce 1912 Max von Laue ukázal, že rentgenové záření podléhá na krystalech difrakci, způsobil tím revoluci v chemii a vysloužil si Nobelovu cenu. Difrakční obrazce představují obrazy rozložení atomů v krystalu a chemikové tak mohou „vidět“ atomy v krystalech. ´
Většina zajímavé chemie se ale odehrává v roztoku. Arzenál metod použitelných ke studiu kapalin je přitom značně omezený. Potíž spočívá v náhodném pohybu molekul v kapalině. V březnovém čísle prestižního časopisu Nature Chemistry nyní vychází práce spojeného týmu experimentátorů z Berlína a teoretiků z Prahy a Heidelbergu ukazující, že rentgenové záření může odhalit i strukturu kapalných roztoků, a to díky elektronům vyletujícím z ozářené kapaliny. Energie těchto elektronů v sobě nese otisk uspořádání atomů v roztoku.
Rentgenové záření je „světlo“ s fotony o velké energii. Molekuly se ozářením ocitnou v ohromně vybuzeném stavu a potřebují se přebytečné energie zbavit. Typicky to odnese některý z elektronů, který je vymrštěn z molekuly - mluvíme o Augerovu ději. Za určitých okolností takto může být „obětován“ i elektron ze sousedních molekul. Takovéto děje byly popsány docela nedávno. Na vývoji v této oblasti se výrazně podílí i Laboratoř teoretické fotodynamiky prof. Petra Slavíčka z Vysoké školy chemicko-technologické v Praze.
Jeden z těchto dějů, tzv. rozpad zprostředkovaný přenosem elektronu (ETMD, electron transfer mediated decay) zanechává v okolí původně vybuzené molekuly dokonce dvě molekuly s vyraženým elektronem. „Elektrony vyletující z ozářeného roztoku přitom v sobě nesou otisk struktury roztoku, z roztoku létají různé elektrony, záleží na uspořádání molekul,“ vysvětluje RNDr. Eva Muchová z české části mezinárodního týmu.
Popsaný děj byl v kapalinách pozorován vůbec poprvé. „Málokdo je zatím schopen potřebné experimenty provést. Potřebujete zdroj laditelného rentgenového záření a zároveň musíte umět chytat elektrony vyletující po ozáření z kapaliny. Bernd Winter z Berlína vyvíjí techniku kapalných mikrotrysek, díky které je obojí možné,“ říká doktorka Muchová. Vyznat se ve vyletujících elektronech ale zatím nelze bez pomoci kvantové teorie a molekulárních simulací. „Museli jsme najít způsob, jak rozpoznat často se objevující strukturní motivy a jak je přiřadit k experimentálním datům,“ podotýká Eva Muchová.

Tento článek je uzamčen
Článek mohou odemknout uživatelé s odpovídajícím placeným předplatným, nebo přihlášení uživatelé za Prémiové body PLPřidejte si PL do svých oblíbených zdrojů na Google Zprávy. Děkujeme.
autor: Tisková zpráva